Ch 14 Conjugated Dienes and UV Spectroscopy

Conjugated Systems

- Conjugated systems have alternating single and double bonds.
 - For example: C=C-C=C-C=C and C=C-C=O
- This is not conjugated because the double and single bonds do not alternate: C=C-C-C=C
- Triple bonds (C≡C and C≡N) can be included in place of double bonds. For example: C≡C−C=C−C≡N
- All of the conjugated atoms are sp² or sp.
- Atoms with sp³ are not part of the conjugated system.

Preparation

- Conjugated systems are typically prepared either by dehydrohalogenation of allyl halides (C=C-CX-C) with base in alcohol, or by dehydration of 1,3-diols (HOC-C-COH-C) with Al₂O₃ and heat.

Stability

- Conjugated dienes are more stable than non-conjugated alkenes.
- This is known because conjugated dienes release less heat than non-conjugated alkenes when hydrogenated. That is, hydrogenation of conjugated molecules is less exothermic.
- Stability results from the alternating Π bonds interacting with each other.

Valence Bond Description

- The sp² orbitals have more s character than the sp³ orbitals have.
- The sp² orbitals are shorter and rounder than the sp³ orbitals.
- C–C σ bonds involving sp^2 orbitals are stronger and shorter and than those that do not.
- In 1,3-butadiene, C=C-C=C, all three σ bonds are sp² sp².
- In 1-butene, C=C-C-C, the first σ bond is $sp^2 sp^2$ (strongest), the second is $sp^2 sp^3$ (less strong), then the third is $sp^3 sp^3$ (weakest).

Molecular Orbital (MO) Description

- When p orbitals bond to form Π bonds, each p atomic orbital becomes a Π molecular orbital.
- The Π MO's in adjacent conjugated bonds interact together as a single Π system.
- In 1,3-butadiene, C=C-C=C, all four C's have one Π MO each. So, there are four Π MO's total.
- Two are bonding orbitals (stabilizing), and the other two are anti-bonding (destabilizing).
- Each C has one Π e⁻¹. So, there are four Π e⁻¹'s total. They fill the two bonding MO's, while the antibonding MO's are left empty.
- The lowest energy MO $(\Psi 1)$ has no nodes and is a completely continuous system, involving all four C's with no separation.
- The next to lowest MO (Ψ 2) has one node, between C2 and C3, and acts like two separate Π bonds.

- The next highest energy MO (Ψ 3*) is antibonding. It has two nodes, one between C1 and C2, the other between C3 and C4. So, it acts like there is only one Π bond. This would destabilize the molecule if occupied with e^{-1} 's.
- The highest energy MO (Ψ 4*) has three nodes, one between each C. This completely isolates the Π orbitals. It is very destabilizing (antibonding) if occupied with e⁻¹'s.

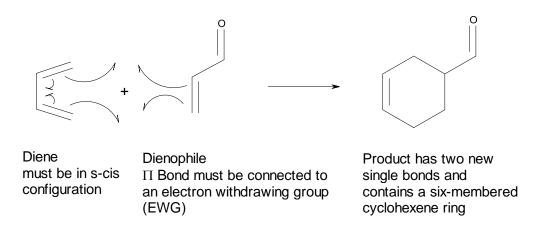
Electrophilic Additions and Allyl Cations

- When a conjugated diene reacts with HBr, the first step is addition of an H to the least substituted C in the Π system. In 1,3-butadiene, C=C-C=C, this would be an end carbon.
- The C with the positive charge will be adjacent to the one that got the H, and that C will be allylic because it is next to another double bond.
- Allylic cations, like allylic free radicals, have resonance forms, where the + charge and the adjacent Π bond trade places.

$$C-C^+-C=C \leftrightarrow C-C=C-C^+$$

- The H added to C1, now the Br can add to either C2 (1,2 addition) or C4 (1,4 addition). So, the two products are H₃C-CHBr-CH=CH₂ and H₃C-CH=CH-CH₂Br.

Kinetic Control (Low T)


- At low T, less energy is available for Ea, and the reactions are less reversible.
- The 1,2 addition has a lower Ea, and forms primarily.
- The 1,2 addition does not need to switch to the 2nd carbocation resonance form. Therefore, it forms faster and predominates.

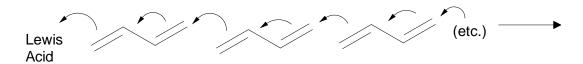
Thermodynamic Control (High T)

- At high T, more energy is available to be used as activation energy for reactions. The system is fully reversible at high T, and it can therefore achieve equilibrium.
- The more stable 1,4 product (more substituted alkene) forms primarily.
- Since more Ea is available, the 1,2 product can revert back to the carbocation, and also the 2nd resonance form has enough Ea to form the 1,4 product.

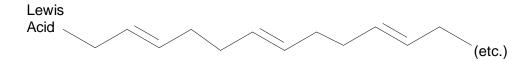
Diels Alder Cycloaddition

- Cycloaddition is one of the few general methods to create cyclic organic compounds.
- A conjugated diene (4 C's) reacts with a dienophile (2 C's) to form a cyclohexene ring (6 C's).
- The mechanism is neither polar, nor radical. It is pericyclic.
- The six Π e⁻¹'s act in concert (simultaneously) to from a cyclic transition state.
- The diene's two inside Π e⁻¹'s form a new Π bond, and the other four Π e⁻¹'s form two new σ bonds, which create the new ring.

Dienophile


- Needs to have an e^{-1} withdrawing group (EWG) that is attached to at least one of the Π bonded C's.
- The most typical EWG's are carbonyls (C=O) and nitriles (C≡N).
- Alkyl groups are not EWG's.
- An EWG will pull e^{-1} 's toward itself, so that the Π bond C's become $\delta+$, and can react with the e^{-1} rich diene.

Diene


- Must have "s-cis" at the σ bond between the two Π bonds.
- Not exactly cis because it involves only the σ bond, but the two Π bonds face each other.
- Note that σ bonds can rotate, and s-trans is more stable because there is less steric strain between the Π bonds.
- For the reaction to occur, the s-trans must typically rotate to the higher E s-cis state.

Diene Rubbers

- Formed from repeated 1,4 addition of diene molecules to a growing chain.
- Intermediates can be cationic, like the 1,4 cation in 1,4 addition of HBr. This occurs if an acid catalyst is used.
- Intermediates can also be free radicals, with an inititation, propagation, and termination, as in section 8.10. Here a free-radical initiator is used to start the reaction.
- The original double bonds are broken to create new single bonds, which link the monomer units together.
- The polymers will have new double bonds for the C's that were single bonded between two double bonds.
- The new double bonds can be Z (cis) or E (trans). For example, there are both cis and trans polybutadienes. Neoprene is a Z polymer made from chloroprene units.
- Rubbers polymers are initially soft and tacky when formed, but can be made firmer and non-sticky by vulcanization (heating with S) Essentially, S creates cross-linked disulfide bridges (R-S-S-R)

1,3-butadiene monomers

(Z) - polybutudiene polymer (has new single bonds between monomer units)

UV Spectroscopy

- Absorptions have $\lambda = 200 400$ nm. Range is next to visible with λ shorter than visible,
- Absorptions correspond to Π e⁻¹ transitions that are Π to Π * (bonding to antibonding).
- For a single molecule and photon, $E = hv = hc/\lambda$. So, E of UV is higher than visible.
- For a mole, we have $E = N_A h v = N_A h c/\lambda$.
- Spectra of samples are measured by their Absorbance:

$$A = -\log(I/Io) = -\log(T)$$

Io is incoming light, I is transmitted thru the sample, and T is transmittance.

- Beer's Law is used to find absorptivity (ϵ), which is a constant for a particular molecule at a particular wavelength.

$$A = \varepsilon LC$$

L is the pathlength (cm) and C is concentration (mol/L)

- Spectra are A vs λ , and are usually a simple curve with one λ_{max} .
- λ_{max} is the wavelength with the highest A (and ϵ)

Effect of conjugation on λmax

- λ_{max} is a function of the E gap between the highest occupied bonding MO (Ψ) and the lowest unoccupied antibonding MO (Ψ *)
- As the extent of conjugation (number of conjugated Π bonds) increases, the E gap decreases. This causes λ_{max} to increase, so that it becomes closer to the visible range.
- Different types of molecules, such as conjugated alkenes, enones (C=C-C=O), and aromatic compounds (benzene rings) have characteristic λ_{max} and ϵ that can be used to identify them.

Conjugation, Color, and Vision

- With extended conjugation systems, the λ_{max} extends into the visible range.
- The molecule then absorbs blue-violet, and it appears as the complementary color, which is yellow-orange, like β -carotene (from carrots).
- β-carotene is converted to all-trans retinol (vitamin A) by the body, which then converts it to 11-cis retinal. This molecule is attached to a protein called opsin, and becomes rhodopsin.
- Rhodopsin is also 11-cis, and is the light sensor in our rod cells. It is isomerized to all-trans metarhodopsin II by light.
- The isomerization would practically never happen without the presence of light.